Rumus Segitiga Pascal - Di dalam pelajaran matematika,
segitiga pascal dapat diartika sebagai sebuah aturan geometrri yang berisi
susunan koefisien binomial yang bentuknya menyerupai segitiga. Aturan ini
ditemukan dan dikembangkan oleh sorang matematikawan asal perancis yang bernama
Blaise Pascal. Perlu kalian ketahio bahwa ada beragam fakta unik yang tersimpan
di dalam segitiga pascal ini. Segitiga pascal terdiri dari beberapa baris
dimana dalam setiap barisnya terkandung bilangan-bilangan yang berupa koefisien
daripada bentuk ekspansi pangkat bilangan cacah dari binomial. Jika belum paham
dengan aturan segitiga pascal, berikut adalah salah satu contoh gambar dari
segitiga pascal yang bisa kalian amati:
Bisa dilihat dari gambar diatas
bahwa puncak atau bagian teratas dari segitiga pascal (baris ke 0) diisi dengan
angka 1. Kemudian di bawahnya (baris ke 1) diisi dengan angka 1 dan 1. Kemudian
baris elanjutnya (baris ke-2) tetap di isi dengan angka 1 dan 1 dibagian
sisinya kemudian pada bagian dalam diisi dengan hasil dari penjumlahan dua
bilangan yang ada di atasnya (1+1=2). Sedangkan untuk baris ketiga diisi dengan
angka 1 dan 1 pada bagian sisi kemudian bagian tengahnya diisi dengan angka
hasil dari penjumlahan dua buah bilangan yang ada pada baris ke-2 (1+2 =3). Kemudian perhatikan pada baris keempat, angka 4 di dapatkan dari hasil penjumlahan dua bilangan yang ada di atasnya (1+3) begitu juga angka 6 diperoleh dari penjumlahan dua bilangan yang ada di atasnya (3 + 3). dan
begitu seterusnya.
Penjelasan Rumus Segitiga Pascal dalam Matematika
Bilangan-bilangan yang ada pada
setiap baris segitiga pascal menunjuhkan koefisien yang berupapenyederhanaan
bentuk dari (a + b)n.
Apabila kita menjabarkan bentuk
(a + b)n tersebut, maka akan terlihat bahwakoefisien yang diperoleh
dari bentuk tersebut sama persis dengan tiap-tiap bilangan yang ada pada setiap
baris dari segitiga pascal di atas. Coba perhatikan penyederhanaan berikut ini:
1. (a + b)1 = a + b à
koefisiennya adalah 1 dan 1
2. (a + b)2 = a2 + 2ab + b2 à
koefisiennya adalah 1, 2, dan 1
3. (a + b)3 = (a + b)(a2 + 2ab + b2)
= a3
+ 2a2b + ab2 + a2b + 2ab2 + b3
= a3
+ 3a2b + 3ab2 + b3 à
koefisiennya adalah 1, 3, 3, dan 1
Jika kita perhatikan, pola bilangan tersebut sebenarnya adalah
koefisien dari expansi pangkat binomial, coba kalian perhatikan contoh berikut
ini:
(x + y)4 = x4
+ 4x3y + 6x2y2 + 4xy3 + y4
artinya, pada i=4 diperoleh koefisien dari expansi
pangkat binomial 4 yaitu 1, 4, 6, 4, dan 1 yang ternyata adalah
bilangan-bilangan yang mengisi baris ke-4 pada sebuah segitiga Pascal. Sekarang
coba perhatikan Teorema Binomial di bawah ini:
Dari penguraian rumus diatas, dapat disimpulkan secara umum
bahwasannya barisan bilangan yang ada pada baris i=k di dalam sebuah
segitiga Pascal dapat dituliskan menjadi seperti berikut ini:
Untuk lebih jelasnya mari kita ambil contoh untuk bilangan ke-2 dan
ke-3 yang ada pada baris ke-5 dalam segitiga Pascal adalah:
Dari pola di atas juga bisa diperoleh sebuah rumus baru yang dapat
digunakan untuk menentukan bilangan a i, j yang merupakan
bilangan yang ada pada baris ke-i dan
kolom ke-j seperti berikut ini:
Kita umpamakan saja misalkan kita ingin mencari bilangan
yang ada di posisi baris ke-7 dan tepat pada kolom ke-6 maka perhitungan
rumusnya adalah:
Dari penjabaran rumus tersebut, kita dapat menuliskan
barisan bilangan yang ada pada diagonal ke-d menjadi sebagai berikut:
Sehingga pada akhirnya didapatkan rumus suku ke-n dari
barisan bilangan yang ada pada diagonak ke-d seperti di bawah ini:
untuk membuktikan rumus tersebut, mari kita coba mencari
diagonal ke-3 pada sebuah segitiga Pascal yang memiliki pola n(n + 1)/2.
Berikut adalah hasil ujinya:
Kurang lebih begitulah cara Memahami Rumus Segitiga Pascal dalam Matematika yang bisa Rumus Matematika Dasar jelaskan kepada kalian semua. Semoga kalian bisa memahaminya dengan baik dan mengerti tentang pola bilangan yang berlaku dalam segitiga Pascal. Sampai jumpa lagi dalam materi matematika lainnya.
1 komentar - Skip ke Kotak Komentar
Makasih banyak....
Post a Comment